Which Fiber Loopback Should I Use for My Transceiver?

In telecommunication, fiber loopback is a hardware designed to provide a media of return patch for a fiber optic signal, which is typically used for fiber optic testing or network restorations. When we need to know whether our fiber optic transceiver is working perfectly, we can use a fiber loopback cable as an economic way to check and ensure it. Basically, the loopback aids in debugging the physical connection problem of the transceiver by directly routing the laser signal from the transmitter port back to the receiver port. Since fiber optic transceivers have different interface types and connect different types of cables, it is not that simple to choose a right loopback for our transceiver. This post will be a guide on how to choose a right loopback cable for specific transceiver module.

Fiber Loopback Types and Configurations

Before deciding which loopback cable to use, we should firstly know the structure and classification of fiber loopback cable. Generally, a fiber loopback is a simplex fiber optic cable terminated with two connectors on each end, forming a loop. Some vendors provide improved structure with a black enclosure to protect the optical cable. This designing is more compact in size and stronger in use. Based on the fiber type used, there is single-mode loopback and multimode loopback, available for different polishing types. According to the optical connector type of the loopback, fiber loopback cables can be divided to LC, SC, FC, ST, MTP/MPO, E2000, etc. In testing fiber optic transceiver modules, the most commonly used are LC, SC and MTP/MPO loopback cables.

lc&sc loopback cable

Figure 1: LC & SC Loopback Cable

The LC and SC loopbacks are made with simplex fiber cable and common connectors; it’s not difficult to understand their configurations. As for the MTP/MPO loopback, it is mainly used for testing parallel optics, such as 40G and 100G transceivers. Its configuration varies since the fiber count is not always the same in different applications.

8 Fibers MTP/MPO Loopback Cable Configuration

In a 8 fibers MTP/MPO loopback, eight fibers are aligned on two sides of the connector, leaving the central four channels empty. And the fibers adopt a straight configuration of 1-12, 2-11, 5-8, 6-7. The polarity channel alignment is illustrated in the following figure.

8 Fibers Loopback Polarity Channel Alignment

Figure 2: 8 Fibers Loopback Polarity Channel Alignment

12 Fibers MTP/MPO Loopback Cable Configuration

The only difference between the 12-fiber MTP loopback and the 8-fiber loopback is that the central four channels are not empty. Its alignment is 1-12, 2-11, 3-10, 4-9, 5-8, 6-7.

12 Fibers Loopback Polarity Channel Alignment

Figure 3: 12 Fibers Loopback Polarity Channel Alignment

24 Fibers MTP/MPO Loopback Cable Configuration

The 24 fibers MTP loopback also adopts type 1 polarity. Its alignment design is shown below.

24 Fibers Loopback Polarity Channel Alignment

Figure 4: 24 Fibers Loopback Polarity Channel Alignment

Which to Choose for a Specific Transceiver?

Considering the common features of the transceiver and the loopback, we should think about the connector type, polish type, and cable type when selecting a loopback for the transceiver. The selection guide for some mostly used transceiver modules is summarized in the following tables.

Table 1: Loopback choices for 10G SFP+ transceivers

Model Interface type Cable Type Suited Loopback
10GBASE-USR LC Duplex (PC) MMF

LC/UPC Duplex Multimode Fiber Loopback

10GBASE-SR LC Duplex (UPC) MMF
10GBASE-LR LC Duplex (UPC) MMF
10GBASE-ER LC Duplex (UPC) SMF

LC/UPC Duplex Single-mode Fiber Loopback

10GBASE-ZR LC Duplex (PC) SMF

Table 2: Loopback choices for 40G QSFP+ transceivers

Model Interface type Cable Type Suited Loopback
40GBASE-CSR4 MTP/MPO (UPC) MMF

8/12 Fibers MTP/UPC Multimode Fiber Loopback

40GBASE-SR4 MTP/MPO (UPC) MMF
40GBASE-PLRL4 MTP/MPO (APC) SMF

8/12 Fibers MTP/APC Single-mode Fiber Loopback

40GBASE-PLR4 MTP/MPO (APC) SMF
40GBASE-LR4 LC Duplex (PC) SMF

LC/UPC Duplex Single-mode Fiber Loopback

40GBASE-LR4L LC Duplex (UPC) SMF
40GBASE-ER4 LC Duplex (UPC) SMF
40GBASE-LX4 LC Duplex (UPC) MMF/SMF

LC/UPC Duplex Multimode/Single-mode Fiber Loopback

Table 3: Loopback choices for 100G QSFP28 transceivers

Model Interface type Cable Type Suited Loopback
100GBASE-SR4 MTP/MPO (UPC) MMF

8/12 Fibers MTP/UPC Multimode Fiber Loopback

100GBASE-PSM4 MTP/MPO (APC) SMF

8/12 Fibers MTP/APC Single-mode Fiber Loopback

100GBASE-LR4 LC Duplex (UPC) SMF

LC/UPC Duplex Single-mode Fiber Loopback

Table 4: Loopback choices for CFP transceivers

Model Interface type Cable Type Suited Loopback
40GBASE-SR4 CFP MPO/MTP (UPC) MMF

8/12 Fibers MTP/UPC Multimode Fiber Loopback

40GBASE-LR4 CFP SC Duplex (UPC) SMF

SC/UPC Duplex Single-mode Fiber Loopback

40GBASE-FR CFP SC Duplex (UPC) SMF
100GBASE-LR4 CFP SC Duplex(PC/UPC) SMF
100GBASE-ER4 CFP SC Duplex(PC/UPC) SMF
100GBASE-SR4 CFP MPO/MTP (UPC) MMF

24 Fibers MTP/UPC Multimode Fiber Loopback

Conclusion

This post discusses specific fiber loopback choices for some most commonly used fiber optic transceivers. For other transceiver modules that are not mentioned in this post, we can also know how to choose a suitable loopback for it by getting details about its interface type, physical contact and cable type.

Originally posted on: https://goo.gl/8UL6x4

Advertisements

Multiple Applications of 1U Detachable Horizontal Cable Management Panel

Good cable management is essential to keep the fiber cables in acceptable condition and ensuring transmission performance with high-density cabling. A 1U detachable horizontal panel is an amazing part in cable management due to its multiple choices for application. This article will introduce the structure of a 1U detachable cable management panel and its diverse applications in network installation.

Structure of the 1U Detachable Cable Management Panel

This 1U detachable horizontal cable management panel consists of four parts that are held together by screws and can be removed by tools. They are illustrated in the following figure, including horizontal laser bar, horizontal laser panel, D-rings and 1U patch panel.

1U detachable horizontal panel components

Multiple Application Choices of the Detachable Cable Management Panel

This 1U detachable horizontal cable management panel can be used to manage cables for different active or passive network devices because they can be assembled randomly to meet your needs. Here are four application examples of this detachable cable management panel.

It is a good choice for holding different types of adapter panels. As a whole, this detachable cable management panel can be used with LC adapter panel. Here it is used with four fiber adapter panels with 12 LC duplex single-mode adapters. Besides, taking off part 4, it can also be used with a 12/24-port adapter in 1U patch panel form.

1

Combining part 2, 3 and 4 mentioned above, it can be used with MTP/MPO adapter panel. Here it is used for four 8 MTP adapter panel. It should be noted that for each MTP/MPO adapter, 8-fiber MTP/MPO connector is also suited to be linked with 12-fiber MTP/MPO connector when only 8 fibers are used in the 12-fiber MTP/MPO (such as in 40G network).

2-1

By using only part 2 and part 3, cable management for a 1U rack mount fiber enclosure is perfectly achieved.

3-1

The combination in the last example can also be used to manage cables coming from 1U WDM Mux/Demux or switch. In the following figure, on the top this detachable panel is used with a 18 channels CWDM Mux/Demux and at the bottom it is used with a switch.

4

Conclusion

From the application examples presented above, we can see that this 1U detachable horizontal cable management panel is very capable in different cabling situations. You may notice that cable ties are also used to help organize the cables placing inside the D-rings. If you interested in this multifunctional assembly, you can find it on our site (FS.COM). You can also find many other helpful cable management assemblies for managing efficiently high-density structured cabling in your data centers and telecommunication rooms.

The following table displays some details of several cable management devices provided by us They are all in stock at Seattle warehouse and are available for same-day shipping.

Picture Description
cable management-1 1U Detachable Horizontal Panel with D-ring & Lacing Bar
cable management-2 1U Plastic Single-side Horizontal Cable Management Panel with Finger Duct
cable management-3 24 Ports UTP Cat5e 110 Punch Down 1U 19” Fast Ethernet Patch Panel
cable management-4 1U Metal Horizontal Lacer Panel with D-rings

Originally posted on: https://goo.gl/9fYWyX

MTP Specifications and Deployment for 40GBASE-PLRL4 QSFP+

Commonly, QSFP+ transceiver designed with LC interface works with single-mode fiber for long distance application, while QSFP+ transceiver with MTP/MPO interface is used over multimode fiber for short distance transmission. For instance, 40GBASE-ER4 QSFP+ is designed with LC duplex interface, and it supports maximum transmission length of 40 km over single-mode LC duplex fiber; 40GBASE-SR4 QSFP+ with MTP/MPO interface supports a transmission distance no more than 150m over multimode fiber. However, in order to meet user’s diverse needs in real applications, some 40G transceivers are designed not following this rule, like 40GBASE-PLRL4 (parallel LR4 Lite). This transceiver is with MTP/MPO interface design but is used over single-mode fiber for long distance transmission. This article will introduce the MTP/MPO specifications for this transceiver and its deployment cases.

40GBASE-PLRL4 & MTP SMF

MTP Specifications for 40GBASE-PLRL4 QSFP+

QSFP-40G-PLRL4 transceiver uses MTP-12 interface to achieve parallel transmission, supporting maximum data links up to 1.4 km. The cable type required for 40GBASE-PLRL4 is an APC (angle polished connector) single-mode MTP-12 cable. The cable is similar to the 40G-SR MTP or MPO, with the only change being the use of single-mode fiber. UPC (ultra polished connector) is another type of connector for MTP-12 cables, but it is not suited for single-mode fiber in market. APC is the only available type for single-mode MTP-12 fiber. The MTP-12 connector plugged into the QSFP-40G-PLRL4 transceiver carries the 40G signal over only 8 of the 12 fibers, remaining four fibers unused, and these four can optionally be not presented in the cable for economic reason. The used 8 fibers are mapped as 4x10G Tx and Rx pairs. In addition, the MTP cables connected to QSFP-40G-PLRL4 transceiver can be either MTP trunk cables or MTP splitter cables.

Deployment of 40GBASE-PLRL4 QSFP+

The QSFP-40G-PLRL4 is optimized to guarantee interoperability with any IEEE 40GBASE-LR4 and 10GBASE-LR. So when the link for 40G network and 10G to 40G migration is less than 1.4 km, it will be very appropriate to use 40GBASE-PLRL4 QSFP+ transceiver with single-mode MTP cables.

In the first case, you can choose a MTP trunk cable together with the 40GBASE-PLRL4 QSFP+ module for direct 40G connection. The following picture shows two 40GBASE-PLRL4 QSFP+ transceivers connected by a single-mode 12-fiber MTP trunk cable.

PLRL4-1

In the second case, you can simply use an 8-fiber MTP to 4xLC duplex harness cable with one 40GBASE-PLRL4 QSFP+ and four 10GBASE-LR SFP+ to achieve 10G to 40G.

PLRL4-3

You can see in the above two cases, MTP cable plays an important role and due to the special requirements of 40GBASE-PLRL4 for single-mode MTP APC fiber, it is necessary to choose the right MTP products connected to this 40G QSFP+.

Conclusion

40GBASE-PLRL4 QSFP+ module has special interface design which can be only compatible with single-mode MTP connector. During the deployment of 40GBASE-PLRL4 QSFP+ module, selecting proper MTP assemblies are essential to successfully accomplish the link. FS.COM is a professional fiber optic transceiver vendor and MTP product manufacturer, supplying compatible 40GBASE-PLRL4 QSFP+ transceiver of different brands, such as Cisco, Arista, Brocade, Huawei, etc. Also other customized compatible brands are available for your requirements. MTP cables and assemblies are available for same-day shipping at low prices. You will be surprised to see how many kinds of network devices FS.COM can offer and you will get more than cost-effective products but also impressive service.

Originally posted on: https://goo.gl/70Q5fl

MTP HD Cassette and TAP Cassette Over Standard LGX Cassette

Pre-terminated fiber cabling has become a favorable choice for today’s high speed networks in data centers as this technology enables high bandwidth, high port density, easy management, future data rates migration and security monitoring. And modular system allows for rapid deployment of high density data center infrastructure as well as improved troubleshooting and reconfiguration during moves, adds and changes. MTP cassette is such a modular module. Usually it employs configuration of 12 fibers or 24 fibers, containing MTP adapter, LC/SC adapter, MTP-LC or MTP-SC patch cable etc, of which MTP-LC cassette is more widely used. As an assembly of the high density MTP/MPO pre-terminated fiber devices, it is dominant in high-density data centers for its reliable interface, optimized performance and minimized rack space. There are commonly three types of MTP cassettes available in market, including MTP LGX cassette, MTP HD cassette and MTP TAP cassette. This article will introduce the advantages of MTP HD cassette and MTP TAP cassette over the standard MTP LGX cassette.

MTP cassette

MTP HD Cassette Over MTP LGX Cassette

Though the MTP cassette is preferred for its high density, there is still difference in used rack space between MTP LGX cassette and HD cassette. For standard LGX cassette, usually 3pcs of LGX cassette are put inside a 1U19’’ rack, or 12pcs inside a 4U 19’’ rack, as shown in the figure below. However, HD cassette is more optimized for high-density applications than LGX cassette for being more compact in package. 5pcs of HD cassette can be put inside a 1U 19’’ rack. So if the space for a data center is urgent to be saved, MTP HD cassette will be the best selection to help minimize the rack space for the most fiber count.

standard LGX in 1U and 4U

MTP TAP Cassette Over MTP LGX Cassette

TAP (traffic access point) is usually added in the network for network monitoring. MTP TAP cassette is an effective device for real-time monitoring in high performance network and high density cabling. TAP cassette integrates TAP functionality into cable patching system. A TAP uses a passive fiber optic splitter to create an exact copy of the light signal passing through it. The fiber carrying the signal from a device’s transmit port is connected to the splitter input; the splitter’s live output is connected to the receive port of the downstream device, while a second output carries the copy of the live signal for out-of-band access. A TAP uses two of these splitters, installed on the two fibers supporting both channels of a duplex fiber channel link, to create a complete copy of all traffic between the two devices. And the transmission for the network data will not be affected since there are ports for monitoring and ports for transmission. The MTP TAP cassette can adopt both the package of HD and LGX cassette. The MTP TAP cassette can be easily deployed in network by connecting to the monitoring device and the user device with MTP trunk/breakout cables or LC/SC patch cables. For this hardware tool, TAP cassette is more expensive than the other two cassette types.

Conclusion

This article compares two MTP cassettes with the MTP standard LGX cassette and states the advantages of them. So if space is the primary consideration in high density cabling, MTP HD cassette is a better design choice; if a secure network with high performance is the priority, MTP TAP cassette is recommended to be deployed in the network. For special applications where high density and monitoring are both required, MTP TAP cassette with compact design is the best choice!

Originally posted on: https://goo.gl/2zQt4r

How Do Optical Transceiver Vendors Differentiate Their Transceiver Designs?

In order to get a bigger share of the market. Transceiver vendors are challenged in how to differentiate their optical transceiver designs and give the products conform to common form factors. To understand the importance of transceiver differentiation, it is worth reviewing the purpose of multi-source agreement (MSA) transceiver form factors.

Common form factors arose so that optical equipment makers could avoid developing their own interfaces or being locked into a supplier’s proprietary design. Judged in those terms, MSAs have been a roaring success. Equipment makers can now buy optical intdsc_1159erfaces from several sources, all battling for the design win. MSAs have also triggered a near-decade of innovation, resulting in form factors from the 300-pin large form factor transponder MSA to the pluggable SFP+, less than a 60th its size.

But MSAs, with their dictated size and electrical interfaces, are earmarked for specific sectors. As such the protocols, line rates, and distances they support are largely predefined. Little scope, then, for differentiation. Yet vendors have developed ways to stand out. One approach is to be a founding member of an MSA. This gives the inner circle of vendors a time-to-market advantage in securing customers for emerging standards. The CFP MSA for 40- and 100-Gigabit Ethernet is one such example.

Some designs required specialist optical components that only a few vendors have, such as high-speed VCSELs used for the latest Fibre Channel interfaces. In turn, many vendors don’t have the resources—designs teams and the deep pockets—needed to develop advanced technologies, such as those for 40- and 100-Gbps transponders, whether it is integrated optical devices or integrated circuits.

Being the first to integrate existing designs into smaller form factors is another way to differentiate oneself. An example is JDSU, which has integrated a tunable laser into the pluggable XFP MSA. Fiberstore also then launched tunable XFP which features with tunable and multi-protocol functions in order to further expand the product lineup of the 10G optical transceiver modules.

Transceiver vendors are also differentiating their products through marketing approaches. New-entrant Far Eastern vendors are selling transceivers directly to service providers and data center operators, bypassing equipment makers. They are also looking to differentiate on price, cutting costs where they can (including R&D) and focusing on bread-and-butter designs. They are quite happy to leave the leading vendors to make the heavy investments and battle each other in the emerging 40- and 100-Gbps markets.

Some people think differentiation doesn’t matter so much for optical transceivers since even if a vendor gets a lead, others inevitable will follow. And anyway, the cost of transporting traffic is still too high even787878787 with the fierce competition instigated by MSAs. In turn, optical transceivers are now a permanent industry fixture and they can’t be conjured to disappear.

For optical transceiver vendors, however, the result is a market that is brutal. So can optical transceiver vendors differentiate their products? Of course they can. FS.COM (Fiberstore), a company devoting on the research & development, and offering fiber connectivity network solutions for carriers, ISPs, content providers and networks, is the global market innovator and application technology pioneer in the field of optical network devices and interconnection. In the future, they seem to change this market.

Source: http://www.cables-solutions.com/how-do-optical-transceiver-vendors-differentiate-their-transceiver-designs.html

HOW DOES FIBRE CHANNEL WORK?

In the past days, I have talked many about the Ethernet. Actually, there are many other networking protocols used in data transports. Fibre Channel (FC), my topic today, is one of them. Fibre Channel is a set of standard that define a high performance data transport connection technology. It is developed to satisfy the increasing demands for high-speed, high-volume data transfers in storage and network services. So, how does Fibre Channel work to achieve these applications?

Physical Components

Fibre Channel carries data over many types of electrical and optical cable. To choose the type of overall network interconnection is crucial. The decision usually depends on the distances between the Fibre Channel devices being connected. Generally, copper cabling is cheaper and performs as well as fiber optic cabling when the distance between devices is less than 2.9 meters. But to get higher speed and for longer distance, fiber optic cabling with single-mode or multimode option is the ideal choice. In addition, fiber optic cabling is more flexible for extensions in the future.

Cable is one of the physical component of FC. It connect to ports on the devices to form a link. There are different types of FC ports. The following table summarizes sevent FC port types:

Short Name Descriptive Name Device Type Port Function
N-port Network Port Nodes Node port used to connect a node to a Fibre Channel switch
F-port Fabric Port Switches Switch port used to connect the Fibre Channel fabric to a node
L-port Loop Port Nodes Node port used to connect a node to a Fibre Channel loop
NL-port Network + Loop Port Nodes Node port that connects to both loops and switches
FL-port Fabric + Loop Port Switches Switch port that connects to both loops and switches
E-port Extender Port Switches Used to cascade Fibre Channel switches together
G-port General Port Switches General purpose port that can be configured to emulate other port types

A transceiver or transmitter/receiver is the fiber optic port of a device where the fiber optic cables connect. For Fibre Channel network, the Fibre Channel transceiver modules are used. In today’s market, the Fibre Channel modules in data rate of 2, 4, 8 Gbps or above, e.g. 16 Gbps are commonly used, and generally packaged in the form factor of SFP (2/4Gbps Fibre Channel SFP) and SFP+ (8Gbps Fibre Channel SFP+). Other form factor, such GBIC or XFP is also available according to the port applications.

Topologies

Three distinct topologies are defined for Fibre Channel to meet various of application and installation requirements. These topologies exhibit different performance characteristics, and are subject to different scalability limits.

Point-to-point

Point-to-Point topology is the most basic and simple Fibre Channel topology. As its name suggests, two devices are directly connected by a Fibre Channel cable when using this topology. Addressing is simple and device availability is complete. However, it is not a common topology today. In general, it has been used to connect RAID (Redundant Array of Independent Disks) and other storage subsystems to servers in server-centric computing environments.

point-to-point

Arbitrated Loop

Arbitrated loop topology provides economical interconnection to applications. It is possible for individual transmission paths, or loops, to be time-shared by up to 126 devices. Each time a loop is available for use, the devices arbitrate to determine which device gets to send data or commands next. This topology is usually used to connect disk drives to RAID controllers or host bus adapters (HBA).

loop

Switched fabric

Switched fabric is a powerful FC topology used in modern Storage Area Network (SAN). It essentially consists of one or more switches, controlling a large amount of port-to-port transfers of data and commands (also know as frames) between nodes. Within a fabric, multiple interconnections happen concurrently—and all frames are routed to their proper destinations. System wide bandwidth can be as much as an order of magnitude greater than the speed of any single Fibre Channel link. With such high transfer rates, many users in a workflow can work with the same data at the same time, facilitating collaboration and increasing productivity.

Fabric

Upper-Level Protocol Mapping

There are five protocol layers of Fibre Channel—FC-0, FC-1, FC-2, FC-3, and FC-4. An upper-level protocol mapping to FC-FS (Fibre Channel Framing and Signaling) constitutes an FC-4 that is the highest level in FC structure. To insure device interoperability, standards have been developed to map some of these higher-level protocols to a format that Fibre Channel can transmit. For example, one protocol defines how to translate SCSI (Small Computer System Interface) command descriptors, which would normally be sent in parallel, into serial Fibre Channel format, and back to parallel SCSI when they are received by the target device. The following network and channel protocol mappings have been specified or proposed:

  • Small Computer System Interface (SCSI)
  • Internet Protocol (IP)
  • High Performance Parallel Interface (HIPPI) Framing Protocol
  • Link Encapsulation (FC-LE)
  • Single Byte Command Code Sets (SBCCS)
  • Audio Video Fast File Transfer
  • Audio Video Real Time Stream Transfer
  • More…

Reference:

http://www.apple.com

http://www.ibm.com

 

Source: http://www.fiber-optic-transceiver-module.com/how-does-fibre-channel-work.html

How to Take Full Advantages of Switches in Data Center: A Case Study of IBM G8264 Switch

During data center upgrading or migration to higher data rate like 40G/100G, the network designer is always pursuing for flexibility. This is because devices or cabling components with great flexibility can not only decrease the cost for upgrading, but also provide more possibilities for the data center in the future. Switch has always been the most important device data center. Thus, a flexible switch should support a variety of transmission media and data rates, which could have significant positive influence during data center upgrading on cabling and costs. IBM G8264 switch is such a switch that is specially designed for data center, which is suggested to be used at layer 2 or layer 3, providing non-blocking line-rate, high-bandwidth switching, filtering, and traffic queuing without delaying data. However, to make full use of these switches, you should select proper connection components and cabling plans. This post will take IBM G8264 switch as an example to illustrate how to take full advantages of the switches in data center.

Understand Your Switch—IBM G8264 Switch

The first step to make full use of a switch is to have a full understanding of the switch you are using. There are many ways to understand your switch. While the most direct method is to understand the ports on the switches. This method also works for IBM G8264 switches. As shown in the following picture, which is the front panel of IBM G8264 switch, the most outstanding part of the switch is the 48 SFP/SFP+ ports. It occupied most space on IBM G8264 switch front panel. These ports can support data rate of 1G/10G. Four QSFP+ ports for 40G are beside these SFP/SFP+ ports. There are three another ports for other use on the from panel: one 10/100/1000 Ethernet RJ45 port for out of band management, one USB port for mass storage device connection and one mini-USE console port for serial access.

IBM G8264 switch port information

IBM G8264 Connection in Data Center

It is clear that IBM G8264 switch can support data rate of 1G, 10G and 40G. The following parts illustrate how to connect IBM G8264 with the target devices in 1G, 10G, and 40G network separately in details. During the cabling in data center, distance is always a factor that cannot be ignored. The transmission distance required, can largely decide the cabling components selection.

1G Connection of IBM G8264 Switch

To accomplish the 1G connection of IBM G8264 switch and target devices, there are several methods according to transmission distance and transmission media (fiber optic or copper). For distance up to 100 meters, RJ-45 1000BASE-T SFP transceivers with UTP Cat5 cables are suggested, cause they are based on copper and is cheaper than fiber optic components. However, if you want reach a longer distance with good transmission quality, it would be better to use fiber optic cable and optical transceiver. By using 1000BASE-SX SFP optical transceivers with multimode fiber, the transmission distance is up to 220 (62.5 μ multimode fiber) meters and 550 meters (50 μ multimode fiber). For long distance transmission, single-mode fiber optic cables are suggested to be used with 1000BASE-LX SFP optical transceivers, which can connect IBM G8264 switch with the target devices that are 10 kilometers far away. The following chart is the detailed product solutions for IBM G8264 1G connection.

Transmission Media Module Cable & Connector Distance
Copper Cable BN-CKM-S-T: SFP 1000BASE-T copper transceiver RJ45, Cat5 cable 100 m
Fiber Optic Cable BN-CKM-S-SX: SFP 1000BASE-SX optical transceiver LC duplex, MMF 220 m(50μ multimode fiber)
550 m(62.5μ multimode fiber)
BN-CKM-S-LX: SFP 1000BASE-LX optical transceiver LC duplex, SMF 10 km
10G Connection of IBM G8264 Switch

As mentioned, IBM G8264 switch supports 10G configuration. For 10G, there are mainly two methods: using DACs (direct attach cables) or using transceivers and patch cords. The beauty of using DAC is the eliminating of transceivers and reduction of cost. However, the transmission distance is limited to 7 meters by using DACs. If longer distances are required, 10GBASE-SR transceiver used with OM3 multimode fiber can support transmission distance up to 300 meters. If 10GBASE-SR transceiver is used with OM4 fiber optic cable, distance up to 400 meters could be reached. Using 10GBASE-LR transceiver with single-mode fiber optic cable, IBM G8264 switch can be connected with target devices that are 40 kilometers away.

IBM G8264 switch and 40GBASE QSFP+ transceiver

If the 10G ports number cannot satisfy the requirements, the one QSFP+ port on IBM G8264 can be split into four 10G ports, by using QSFP+ DAC breakout cables for distances up to 5 meters. For distances up to 100 meters, optical MTP-to-LC break-out cables can be used with the 40GBASE-SR4 transceiver. Kindly check the following table for IBM G8264 switch 10G cabling components solutions.

Data Rate Modules Cable & Connector Distance
10G-10G Connection BN-SP-CBL-1M: SFP+ Copper Direct Attach Cable (1 meter) 0.5-7 m
BN-SP-CBL-3M: SFP+ Copper Direct Attach Cable (3 meter)
BN-SP-CBL-5M: SFP+ Copper Direct Attach Cable (5 meter)
BN-CKM-SP-SR: SFP+ 10GBASE-SR Short Range Transceiver LC duplex, MMF 300 m(OM3)
400 m(OM4)
BN-CKM-SP-LR: SFP+ 10GBASE-LR Long Range Transceiver LC duplex, SMF 40 km
40G-10G Connection BN-QS-SP-CBL-1M: QSFP+ DAC Break Out Cable (1 meter) 5 m
BN-QS-SP-CBL-3M: QSFP+ DAC Break Out Cable (3 meter)
BN-QS-SP-CBL-5M: QSFP+ DAC Break Out Cable (5 meter)
BN-CKM-QS-SR: QSFP+ 40GBASE-SR Transceiver MTP-to-LC break-out cables 100 m
40G Connection of IBM G8264 Switch

For 40G connection, both fiber optic connection and copper connection can be built by using different components. A 40GBASE QSFP+ to QSFP+ DAC can provide connection between IBM G8264 and target devices up to 7 meters. With multimode fiber optic cables, distance up to 100 meters (OM3) and 150 meters (OM4) can be reached, when using with 40GBASE-SR4 QSFP+ transceivers. For long distance 40G transmission, 40GBSE-LR QSFP+ transceiver and single-mode fiber optic cable with LC connectors are suggested. Related components for IBM G8264 switch are concluded in the following chart.

Modules Cable & Connector Distance
49Y7884: QSFP+ 40GBASE-SR Transceiver MTP connector, MMF 100 m(OM3)
100 m(OM4)
00D6222: 40GBASE-LR4 QSFP+ Transceiver LC connector, SMF 10 km
BN-QS-QS-CBL-1M: QSFP-to-QSFP cable (1 meter) 1-7 m
BN-QS-QS-CBL-3M: QSFP-to-QSFP cable (3 meter)
Conclusion

To make full used of the switches in data center with great flexibility, both the selection of switch and cabling solutions is very important. IBM G8264 as a switch with great flexibility is an ideal solution for data center upgrading to 40G. The above mentioned modules and cables are all provided by FS.COM, which are IBM G8264 compatible and are fully tested on the IBM G8264 switches. Kindly contact sales@fs.com for more details, if you are interested.

Source: http://www.fiber-optic-tutorial.com/how-to-take-full-advantages-of-switches-in-data-center.html